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Abstract

Objective. Retinal fluid mainly includes intra-retinal fluid (IRF), sub-retinal fluid (SRF) and pigment
epithelial detachment (PED), whose accurate segmentation in optical coherence tomography (OCT)
image is of great importance to the diagnosis and treatment of the relative fundus diseases. Approach.
In this paper, a novel two-stage multi-class retinal fluid joint segmentation framework based on
cascaded convolutional neural networks is proposed. In the pre-segmentation stage, a U-shape
encoder—decoder network is adopted to acquire the retinal mask and generate a retinal relative
distance map, which can provide the spatial prior information for the next fluid segmentation. In the
fluid segmentation stage, an improved context attention and fusion network based on context
shrinkage encode module and multi-scale and multi-category semantic supervision module (named
as ICAF-Net) is proposed to jointly segment IRF, SRF and PED. Main results. the proposed
segmentation framework was evaluated on the dataset of RETOUCH challenge. The average Dice
similarity coefficient, intersection over union and accuracy (Acc) reach 76.39%, 64.03% and 99.32%
respectively. Significance. The proposed framework can achieve good performance in the joint
segmentation of multi-class fluid in retinal OCT images and outperforms some state-of-the-art
segmentation networks.

1. Introduction

MACULAR edema is the accumulation of fluid in the macular area of the retina due to the destruction of the
blood-retinal barrier. It occurs secondary to diabetic retinopathy (DR), retinal vein occlusion and other retinal
diseases, which could lead to serious impairment in vision (Bringmann et al 2004). Retinal fluids mainly include
three types: intra-retinal fluid (IRF), sub-retinal fluid (SRF) and pigment epithelial detachment (PED). Figure 1
shows three examples of optical coherence tomography (OCT) (Huang et al 1991) B-scan images with IRF, SRF
and PED. As can be seen from figure 1, IRF is usually located between the inner and outer nuclear layers and
appears as low-reflective cystic edema, which increases the overall thickness of the retina. SRF is an exudate that
accumulates between the photoreceptor cell layer and the retinal pigment epithelium (RPE), which is also a low-
reflective area caused by retinal detachment. PED is caused by the separation of RPE layer and Bruch’s
membrane, which can be further divided into serous type (low-reflective and dome-shaped area), fibrovascular
type (irregular-shaped area with non-uniform reflection) and drusen type (medium to high reflection area with
smooth boundary) (Marmor 1999). In clinical cases, IRF, SRF and PED may appear simultaneously in the same
eye. Studies have shown that retinal fluid is an effective biomarker, whose size, location and shape can provide
accurate information for the diagnosis and treatment of macular edema (Ristau et al 2013, Waldstein et al 2016).
Therefore, accurate segmentation of multi-class fluid in the retinal OCT image is of great importance, which is
also challenging due to the various shapes, locations and blurred boundaries.

© 2022 Institute of Physics and Engineering in Medicine
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Figure 1. Retinal OCT B-scans with IRF, SRF and PED. From left to right: Cirrus, Spectralis and Topcon. All images are resized to
256 x 256.

In recent years, many researches have been proposed for the segmentation of retinal fluid in OCT images,
which can be classified as traditional machine learning based methods, deep learning based methods and
methods based on the combination of these two methods. In traditional machine learning based methods,
Wilkins et al proposed a thresholding and boundary tracking based method to segment retinal fluid (Wilkins
etal2012). Xu et al obtained the fluid segmentation result by stratified sampling voxel classification (Xu et al
2015). Wu et al proposed a continuous max flow optimization random forest classification based method to
segment serous retinal detachment (Wu et al 2017). Montuoro et al combined unsupervised feature
representation and heterogeneous spatial context to realize the joint segmentation of retinal layer and fluid
(Montuoro etal 2017). Wu et al proposed a Gaussian mixture model based intra-retinal cystoid macular edema
segmentation method (Wu et al 2020). Rashno et al used a neutrosophic transformation and graph-based
shortest path method to segment fluid/cyst regions in OCT images of subjects with diabetic macular edema
(Rashno et al 2017). Rashno et al proposed a neutrosophic C-means clustering method for fluid segmentation in
retinal OCT images (Rashno et al 2019). Esmaeili et al proposed a three-dimensional curvelet transform based
dictionary learning for the automatic segmentation of intraretinal cysts in OCT images (Esmaeili er al 2016). The
traditional methods were mainly well-designed for a certain type of fluid, whose segmentation efficiency is
generally low.

There are some studies which tried to combine traditional machine learning based algorithms with
convolutional neural network (CNN) to segment the retinal fluid. Lu et al proposed a framework for the multi-
class fluid segmentation including IRF, SRF and PED in retinal OCT images, in which a fully convolutional
neural network was trained to label the fluid pixels based on the intensity of OCT images and retinal layer
segmentation provided by a graph-cut algorithm. Random forest classification was performed as post-
processing to exclude the false positives (Lu et al 2019). Rashno et al proposed a graph shortest path algorithm
and CNN based multi-class fluid segmentation method, in which the graph shortest path algorithm was used to
segment internal limiting membrane (ILM) and RPE layers, PED was segmented by RPE layer flattening, and
IRF and SRF were segmented by a CNN trained with supervision (Rashno et al). Gopinath et al designed a CNN
to locate retinal cysts in three-dimensional OCT images by focusing on the axial movement of the OCT B-scan
image to selectively enhance the lesion area. The final segmentation of cysts is obtained via K-means clustering of
the detected cyst locations (Gopinath and Sivaswamy 2018). Compared with the traditional methods, the
segmentation performance of the tradition and deep learning combination based methods is generally
improved, but there is still room for improvement in segmentation efficiency.

With the rapid development of convolutional neural networks, more and more studies have focused on
CNN based networks to segment retinal fluid in OCT images. Lee et al used a U-shape encoder—decoder
structure based convolutional neural network to segment IRF (Lee et al 2017). Roy et al proposed a fully
convolutional deep architecture based ReLayNet for end-to-end segmentation of retinal layers and fluid masses
(Roy etal2017). Schlegl et al proposed an encoder—decoder structure based CNN for IRF and SRF segmentation
(Schlegl et al 2018). Venhuizen et al realized the automatic segmentation and quantification of intraretinal
cystoid fluid by using the cascaded U-shape convolutional neural network and retinal anatomical prior
information (Venhuizen et al 2018). These segmentation networks realized the end-to-end retinal fluid
segmentation by using the relatively primitive U-shape encoder—decoder structure based networks, whose
segmentation performances can be further improved by introducing strategies such as multi-scale information
fusion and attention mechanism. Gao et al proposed a fully convolutional network DA-FCN based on dual-
branch and region constraint to achieve automatic SRF segmentation, in which the dual branches structure
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Figure 2. The overall architecture of the proposed segmentation framework. Skip connections for both branches are omitted for
clarity.

enables the network learn multi-level feature representations (Gao et al 2019). Yang et al proposed a residual
multiple pyramid pooling network (RMPPNet) to realize the segmentation of retinal neurosensory layer
detachment in OCT images. With residual architectures and pyramid pooling modules, RMPPNet can deal with
the receptive field and multi-scale features well (Yang et al 2020). Chen et al used the improved convolutional
neural network SEUNet based on the channel attention mechanism to segment the retinal fluid (Chen et al 2020).
Feng et al designed CPFNet equipped with two pyramid modules to extract and fuse multi-scale information and
achieved good performance in multi-class fluid segmentation including retinal edema area (REA), SRFand PED, in
which the pyramid mechanism can effectively strengthen the segmentation ability of the network for targets with
various sizes (Feng et al 2020). Hassan et al proposed a new multi-scale feature extractor module and demonstrated
superior results in macular fluids segmentation including IRF, SRF and PED (San et al 2020). In our previous work,
we proposed a multi-class retinal fluid automatic segmentation network CAF-Net based on context shrinkage
encode (CSE) module and context pyramid guide module (Ye et al2021), which can be further improved by
considering the fluid prior information both in spatial location and fluid category.

Although there have been many methods for retinal fluid segmentation in OCT images as described above,
most of these methods are designed for single-class fluid segmentation. Due to the various shapes, random
locations and blurred boundaries of IRF, SRF and PED, the joint segmentation of multi-class fluid in OCT
images is very challenging. In this paper, based on our earlier proposed CAF-Net and making full use of the prior
information including the category information and the relative spatial location information of fluid, we
propose a new multi-class retinal fluid joint segmentation framework based on the cascaded convolutional
neural networks.

The main contributions of this paper are as follows:

(1) A two-stage multi-class retinal fluid segmentation framework based on ICAF-Net (Improved CAF-Net,) is
proposed, which combines the prior information including the category information and relative spatial
location of fluid to improve the multi-class retinal fluid joint segmentation performance.

(2) In the pre-segmentation stage, a U-shape network is used to obtain the retinal mask and a retinal relative

distance map is generated, which can provide the prior information about the relative spatial location of
the fluid.

(3) In the fluid segmentation stage, a novel multi-scale and multi-category semantic supervision (MSMC)
module is proposed, in which the fluid category prior information generated by MSMC is fully used as the
deep supervision to make ICAF-Net learn more intra-class consistency and inter-class difference in the
advanced semantic features.

(4) The proposed framework was evaluated on the training and validation dataset of MICCAI2017 RETOUCH
Challenge. The results of ablation experiments and comparison experiments show that the proposed
method can effectively achieve the joint segmentation of multi-class retinal fluid in OCT images.
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Figure 3. The retinal OCT image and the generated retinal relative distance map. (a) OCT image and three types of fluids; (b) retinal
relative distance map. All images are resized to 256 x 256.
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Figure 4. The overall architecture of the proposed ICAF-Net.

The rest of this paper is arranged as follows: in section 2, we describe the proposed multi-class retinal fluid
segmentation framework in details. The experimental results are presented and analyzed in section 3, followed
by the conclusions and discussions in section 4.

2. Methods

2.1. Overview of the framework architecture

Figure 2 is the overall illustration of the proposed multi-class retinal fluid joint segmentation framework based
on the cascaded convolutional neural networks, which includes pre-segmentation stage and fluid segmentation
stage. In the pre-segmentation stage, a U-shape encoder—decoder network is adopted to acquire the retinal mask
and generate the retinal relative distance map, which can provide the spatial prior information for the next fluid
segmentation. The retinal relative distance map is concatenated to the original retinal OCT image in the channel
dimension and taken as the input of the next fluid segmentation stage. In the fluid segmentation stage, the ICAF-
Net based on CSE module and multi-scale and MSMC module is adopted to jointly segment IRF, SRF and PED.

2.2. Pre-segmentation stage
According to the clinical knowledge, although the quantity, shape and spatial location of IRF, SRF and PED
inter-eyes are various, the three generally maintain a relatively stable relationship in the depth direction, that is,
from the inner retina to the outer retina (from top to bottom in figure 3), they usually are IRF, SRF and PED. This
spatial prior information is useful to the joint fluid segmentation.

First, the retinal region (from the inner limiting membrane to the Bruch’s membrane in figure 3(a)) is
segmented by a U-shape network with pre-trained ResNet34 (He et al 2016) as backbone. A joint loss function
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Figure 5. The structure of multi-scale and multi-category semantic supervision (MSMC) module.

consisting of cross entropy loss and exponential logarithmic Dice loss is used during the network training. Due
to the retinal boundary deformation caused by the fluid, the retinal region segmentation result is post-processed
including morphological open and close operation, maximum connected area extraction and curve fitting to
obtain a more accurate retinal mask. Then, the relative distance map of the retina is generated based on the
retinal mask. Specifically, the value I(x, y) of point (x, y) in the retinal relative distance map can be calculated as
follows:

y —Ul)

X 1
D(x) — U(x) )

I(x, y) =
where U(x) represents the vertical ordinate of the upper retinal boundary of point (x, y) in column, that s, the
vertical ordinate of the inner limiting membrane. D(x) represents the vertical ordinate of the lower boundary of
point (x, y) in column, that is, the vertical ordinate of the Bruch’s membrane. Figure 3(b) shows the retinal
relative distance map generated according to Formula (1), which can be used as the spatial prior information to
guide the specific target feature extraction and enhancement in the subsequent retinal fluid segmentation
network.

2.3. Fluid segmentation stage

Figure 4 shows the overall structure of ICAF-Net, which mainly composes of feature encoder, CSE module,
MSMC module and feature decoder. The channel attention mechanism and soft thresholding based CSE
module is the same as that is proposed in our previous CAF-Net (Ye et al 2021) (shown in figure 5) and
embedded after each feature encoder. The MSMC module is embedded in the top of the feature encoder path.

2.3.1. Feature encoder and decoder

In order to get representative feature maps, we adopt the same feature encoder path as the original U-Net
(Ronneberger 2015). The number of feature maps of each encoder is halved to reduce the risk of overfitting. In
order to efficiently reconstruct high-resolution feature maps, each feature decoder of ICAF-Netincludesa3 x 3
convolution and a transposed convolution. The number of feature maps in the decoder path is also halved
compared to the original U-Net. Specifically, the decoder fuses the feature maps from the corresponding CSE
module (Donoho 1995) through skip connection and 3 x 3 convolution, and then upsamples the fused feature
map through transposed convolution.

2.3.2. Multi-scale and MSMC module

Images generally contain category prior information, which determines whether there is a target of a certain class
in the image and is the basis for pixel-level classification (Yu et al 2020). We propose a multi-scale and multi-class
semantic supervision (MSMC) module (shown in figure 5) to aggregate long-range and multi-scale semantic
information, then deep supervision will be applied to directly supervise the aggregation of high-level features
and distinguish the intra-class and inter-class context information. As shown in figure 5, assuming the size of the
input feature map Xis M x H x W (M is the number of channels, H and W are the height and the width of the
feature map respectively). First, we use three parallel dilated convolutions to aggregate multi-scale information
and global average pooling to capture long-range information. Second, we use 3 x 3 convolution with learnable
parameters to resize X € RM*HxW g X/ ¢ RN*HXW (N = H x W). The category prior affinity map A, which
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Figure 6. Generation of the category priori affinity map A.

is generated based on the ground truth and one-hot encoding (Yu et al 2020, Karthiga et al 2021), is adopted to
guide the category prior feature map X" to learn the intra-class and inter-class relationships between pixels. The
feature map X’ isreshapedto N x N(N = H x W)and followed by sigmoid activation function to generate
category prior feature map X”'. Third, matrix multiplication is performed between reshaped X’ and X"’ to
generate intra-class context information feature Y. And the inter-class context information feature Zis
adaptively learned by multiplying X’ with 1 — X". Finally, the input feature map X, intra-class context
information feature map Y and inter-class context information feature map Z are concatenated in the channel
dimension,andal X 1 convolution is used to fuse and restore the dimension of the output feature map O to
M x H x W.Theoverall MSMC module can be summarized as:

X" = o(Re@X") € RN*N 2

Y =X ® X" € RN<HxW (3)
Z=X'® (1 — X") € RNxHxW 4)
O = Conv(X'©Y©X) € RM*xHxW/ ©)

where o represents the sigmoid activation, Re@ represents the operation of reshape, ® represents the matrix
multiplication, © represents the operation of concatenation, Convrepresents the 1 x 1 convolution.

In order to make full use of the pixel-wise category prior information contained in the ground truth, the
category prior affinity map A is generated based on the ground truth and one-hot encoding (Yu et al 2020,
Karthiga et al 2021) and adopted as the deep supervision of the network training, which can guide the category
prior feature map X" to learn the intra-class and inter-class relationships between pixels. Figure 6 shows the
generation of the category prior affinity map A. First, the ground truth is resized to GT € R”*W, Second, one-
hotencoding is adopted to encode each category label in GTto get I € RE**W where Crepresents the
number of categories. Third, I € REXH*W isreshapeto I € RC*N, where N = H x W. Atlast, the category
prior affinity map A is obtained through A = [T x [ € RN*N,

2.4. Loss function

To overcome the class distribution imbalance problem, the joint of multi-class cross entropy loss L and
exponential logarithmic Dice loss (Wong et al 2018). Lg; pjc. is used as the joint segmentation loss function L, to
supervise the prediction results of the network. The definition of L¢g, L pice and Lgeg are as follows:

Lsee = Lce + MLErDice (6)
1 I.C
Lep= =233 ¥ log(p;.) @)
Tizlc:l
18 251 Wiebic €
Letpiee = =y 1~ In| = hehe
(Ot 2ieUpe + ) €
x (y=0.5), 3

where ), isa trade-off between Lcgand Ligpiceand is set to 1 in all experiments. y; . € {0, 1} represents the
probability that the pixel i belongs to class cin ground truth. p; . € [0, 1]represents the probability that the pixel
iis predicted to be class c. T represents the total number of pixels in the image, and Crepresents the total number
of categories. € is a smooth factor and is set to 1e-6.

In order to better guide the network to model the intra-class and inter-class relationships, the category prior
feature map X’ is deeply supervised during the network training by adopting the auxiliary loss function L,,,,,
which combines the unstructured loss Lgg and the structured loss L¢:
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Lawx = Lpce + MolLo, )

where Lpcgis the binary cross-entropy loss and L means global-based structured loss. A, is a hyperparameter to
balance the two losses and is set to 1 in all experiments.
The definition of L is as follows:
1Y
Lpce = _FZ(% log(p) + (1 — y)log(1l — p)), (10)
i=1
where y, € {0, 1} represents the probability that the pixel i belongs to the target in the category prior affinity
map A, p, . € [0, 1]represents the probability that the pixel iis predicted to be the target in the category prior
feature map A. N represents the rows of A, N” represents the total number of pixels in A.
The definition of L is as follows:

1 N
Lg= —NZ@fj + Of + D)) (11)
k=1
N i
PP = 1ong}71yk1:" (12)
i=1tk
N i1
P = 1ogz"}71yk€k (13)
=1k
SEA—yha—ph
P = log == i ) (14)
Zi:l(l - }’k)

where @7, &} and ®; represent the intra-class accuracy, true intra-class rate and true inter-class rate of the kth
row in the category prior feature map X', respectively. Nrepresents the rows of A and X'. ylj € {0, 1} represents
the probability that the pixel i belongs to the target in the kth row of the category prior affinity map A,
pki € [0, 1] represents the probability that the pixel i is predicted to be the target in the kth row of the category
prior feature map X'

The joint segmentation loss function L., and auxiliary loss function Ly, are combined as the total loss
function of the proposed ICAF-Net:

Lo = LSeg + AsLauxs (15)

where \; is a trade-off to balance Lg;and Ly, and is set to 1 in all our experiments.

3. Experiment settings

3.1. Dataset

The dataset used in this paper was acquired from a public competition: RETOUCH Challenge in MICCAI2017
(only training set and validation set are available) (Bogunovi¢ et al 2019), including 70 three-dimensional retinal
OCT images collected by 3 different types of devices: Cirrus (24 volumes with size 1024 x 512 x 128),
Spectralis (24 volumes with 496 x 512 x 49)and Topcon (11 volumes with 885 x 512 x 128and 11 volumes
with 650 x 512 x 128). The ground truth is obtained from manual voxel-wise annotations of the fluid lesions,
which were completed by 4 or 2 graders under the supervision of retinal specialist. Figure 1 shows some OCT
B-scans acquired by these three devices. It can be seen from figure 1. that there are obvious differences in noise
level and contrast between the images from different devices. Three-fold cross-validation strategy is used to
objectively evaluate the proposed multi-class fluid segmentation framework and each fold contains images from
different types of devices. Data augmentation strategies including random horizontal flip, random rotation
(+10") and Gaussian noise addition are applied during the training process.

3.2. Evaluation metrics

In order to objectively evaluate the proposed multi-class retinal fluid joint segmentation framework, three
evaluation indicators including Dice similarity coefficient (DSC), intersection over union (IoU) and accuracy
(Acc) are adopted. These three metrics are also used in the pre-segmentation stage to evaluate the retinal region
segmentation performance. Metrics are calculated as follows:

2Tp

DSC= —~——~ (16)
2TP + FP + EN

- — 1 (17)
TP + FP + EN
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Figure 7. Post-processing and retinal relative distance map. (a) Original OCT B-scan image, (b) ground truth of retinal mask, (c)
predicted retinal mask without post-processing, (d) predicted retinal mask with post-processing, (e) generated retinal relative distance
maps without post-processing, (f) generated retinal relative distance maps with post-processing. All images are resized to 256 x 256.

Table 1. The ablation experiment results for retinal region segmentation (%).

Methods DsC IoU Acc
U-shape network 99.01 £+ 0.75 98.04 £ 1.41 99.35 £ 0.47
U-shape network + pre-trained ResNet34 99.08 £ 0.75 98.20 + 0.14 99.41 + 0.50

U-shape network + pre-trained ResNet34 + post-processing 99.09 £ 0.74 98.21 £ 0.14 99.42 £ 0.46

o TP + TN
TP + FP + TN + FN~

(18)
where TP, FP, TN and FN represent true positive, false positive, true negative and false negative, respectively.

3.3. Implementation details

The proposed method is implemented based on the public platform Pytorch and NVIDIA RTX 2080Ti with 11
GB memory. In the training process of both the pre-segmentation U-shape network and the fluid segmentation
ICAF-Net, stochastic gradient descent (SGD) algorithm with poly learning rate policy is used to optimize the
weights of the network with learning rate Ir:

p
Ir=1Irp, x |1 — fter , (19)
Iter;

where Iter and Iter, represent the current number of iterations and the total number of iterations respectively. In
all ablation and comparison experiments, the basic learning rate Ir;, is set to 0.01 and the declining index p is set
to 0.9. The batch size is set to 8 and the epochs is set to 50.

4. Results

4.1. Experimental results of the pre-segmentation stage

To evaluate the retinal region segmentation performance in the pre-segmentation stage, three ablation
experiments are conducted, including basic U-shape network, U-shape network with pre-trained ResNet34 (U-
shape network + pre-trained ResNet34) and U-shape network with pre-trained ResNet34 and curve fitting
based post-processing (U-shape network + pre-trained ResNet34 + post-processing). Table 1 shows the
results of these three ablation experiments. As shown in figure 1, because the contrast between the retinal region
and the background is relatively large, the segmentation of retinal region in OCT images is a relatively easy task
and good segmentation performance can be achieved by using the basic U-shape network with all evaluation
metrics over 98%. It can be seen from table 1 that the loading of the pre-trained ResNet34 model can further
improve the retinal region segmentation performance, indicating that loading the pre-trained weights can not
only promote the convergence of the network, but also enhance the network’s ability to capture useful features
and finally optimize the segmentation performance. In a few B-scans, the retinal region segmentation results are
affected by fluid (mainly PED), resulting in severe errors as shown in the last row of figure 7(c). For most of the
B-scans, the retinal region segmentation results are either the correct one as shown in the first row of figure 7(c),
or the one with a few false negatives and/or false positives s as shown in the second row of figure 7(c). But as
shown in the second and last rows of figure 7(e), the corresponding retinal relative distance maps may provide
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Figure 8. The segmentation results of ablation experiments on multi-class fluid joint segmentation. (a) Original OCT image, (b)
ground truth, (c) result of Baseline, (d) result of Baseline + CSE, (e) result of Baseline + CSE + MSMC, (f) result of the proposed
method. Red represents IRF, green represents SRF and blue represents PED. All images are resized to 256 x 256.

@ (®)

negative spatial prior information for the next fluid segmentation stage. Some post-processing operations are
used to correct the retinal boundaries. First, morphological operations including open and close operations with
circular element (radius of 5) are adopted to fill the small holes and make the retinal boundary smoother.
Second, the maximum connected area is extracted as the retinal region. Third, cubic curve fitting is performed to
correct the retinal lower boundary. Then, the maximum ordinate error between the fitted retinal lower
boundary and the original lower boundary is calculated. If the error is greater than 15 pixels, the original lower
boundary will be replaced with the fitted one. Figure 8 shows the comparison of the results of the retinal relative
distance map before and after post-processing. As can be seen from the comparison of the relative distance maps
shown in the last two columns of the first row and third row of figure 7 (figures 7(e) and (f)), post-processing is of
great significance for the correction of the relative distance map, which in turn helps to improve the subsequent
fluid segmentation performance.

4.2. Experimental results of the fluid segmentation stage

4.2.1. Ablation experiments

Five ablation experiments are conducted, including Baseline (U-Net with half number offeature map channels),
Baseline with CSE module (Baseline +CSE), Baseline with CSE and MSMC modules

(Baseline + CSE + MSMC, ICAF-Net), Baseline with CSE and MSMC modules and the retinal relative
distance map without post-processing (proposed w/ o post-processing) and the proposed method. Table 2
shows the results of the ablation experiments. The DSC metrics of the proposed framework for IRF, SRF and
PED are 73.62%, 80.92% and 74.64% respectively, and the average DCS reaches 76.39%, which achieves a
significant improvement compared with the Baseline and means that the use of the context information and
prior information can achieve robust feature expression and improve the multi-target recognition ability.

Table 2 shows that, compared with Baseline, the addition of CSE module improves the segmentation
performance of all three types of fluid, especially for IRF and SRF. The possible reason is that the feature
information of the retinal region is more abundant than the background region, which may be also redundant
for fluid segmentation. Compared with feature extraction only by stacking convolutional layers in the Baseline,
the CSE module can distinguish features according to the global context information and make the semantic
information of output feature map have a stronger correlation with the target fluid. That is, the CSE module can
suppress redundant information and retain useful information, thereby effectively extract key information from
noisy feature maps.

It can be seen from table 2 that the category prior information introduced by MSMC has significantly
improved the fluid segmentation performance, with average DSC and average IoU increased by 2.12% and
2.05% respectively. In addition, it can also be found that the segmentation performance improvements of IRF,
SRF and PED are relatively close. The possible reason is that the category prior information is equally important
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Table 2. The ablation experiment results for multi-class fluid joint segmentation (%).

DSC TIoU
Methods Acc
IRF SRF PED Average® IRF SRF PED Average® Overall”
Baseline 71.09 £ 13.95 75.26 £ 22.98 68.50 £ 22.08 71.62 £ 19.67 56.74 £ 15.15 64.41 £ 23.24 55.63 £ 22.08 58.93 £ 20.16 99.13 £ 1.03
Baseline +CSE 72.76 £ 13.50 78.12 £ 18.12 68.60 £ 22.89 73.16 £ 18.17 58.72 £ 14.86 66.92 £ 19.97 56.11 £ 23.38 60.58 £ 19.40 99.22 £ 0.88
Baseline+CSE + MSMC(ICAF-Net) 73.78 + 15.03 80.10 £ 20.12 71.96 £ 22.38 75.28 £ 19.18 59.63 £ 15.46 69.03 £ 21.00 59.22 £ 23.27 62.63 £ 1991 99.26 £ 0.89
Proposed + w/o post-processing” 72.92 £+ 12.99 79.80 + 16.67 73.91 &+ 17.63 75.54 + 15.76 58.84 = 14.67 68.88 £ 18.81 61.26 + 19.72 62.99 + 17.73 99.24 + 0.88
Proposed 73.62 £ 13.19 80.92 + 12.68 74.64 + 19.08 76.39 + 14.98 59.72 + 14.54 69.65 + 16.43 62.72 + 21.78 64.03 + 17.58 99.32 £ 0.78

* Means the average value of the corresponding indexes of IRF, SRF and PED respectively.
" The overall segmentation accuracy of IRF, SRF and PED.
¢ Means the proposed two-stage segmentation framework without the post-processing in the retinal region segmentation stage.
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Figure 9. The segmentation results of different methods. (a) Original OCT images, (b) ground truth, (c) the results of FCN, (d) the
results of CE-Net, (e) the results of CPFNet, (f) the results of U-Net, (g) the results of CAF-Net, (h) the results of the proposed method.
Red represents IRF, green represents SRF and blue represents PED. All images are resized to 256 x 256.

for all the three types of fluids and MSMC can effectively aggregate long-range and multi-scale semantic
information and selectively capture the intra-class and inter-class dependencies between pixels, which makes the
network learn more intra-class consistency and inter-class difference. It can be seen from table 2 that the spatial
prior information introduced by the retinal relative distance map can effectively improve the segmentation
performance of PED, increasing its average DSC, average IoU and Acc by 1.11%, 1.40% and 0.06% respectively.
The retinal relative distance map based spatial prior information has little effect on the segmentation of IRF. We
think the possible reason is that the spatial position of IRF in the retina is relatively fixed and stable in depth
direction, which can be learned well by ICAF-Net during network training. While the distributions of SRF and
PED are relatively close, it is necessary to use the retina relative distance map to distinguish them effectively.
Comparing the fourth and fifth rows in table 2, it can be seen that if there is no post-processing in the retinal
region segmentation stage, it may cause errors in the relative distance map generated subsequently (as shown in
figure 7(e)), which in turn leads to a decline in the overall segmentation performance of the proposed
framework.

Figure 8 shows some multi-class retinal fluid joint segmentation results of ablation experiments, which
shows that the use of CSE module, MSMC and the retinal relative distance map information can improve the
segmentation performance of the proposed network effectively.

4.2.2. Comparison experiments

In order to evaluate its performance, the proposed multi-class fluid joint segmentation framework is compared
with some other state-of-the-art deep learning based image semantic segmentation networks, including U-Net
(Ronneberger et al 2015), Attention U-Net (Oktay et al 2018), CE-Net (Gu et al 2019), FCN (Shelhamer et al
2017), SegNet (Badrinarayanan et al 2017), PSPNet (Zhao et al 2017), CPFNet (Feng et al 2020), DeepLab-V3
(Chenetal2017a,2017b), DANet (Fu et al 2019) and our previous CAF-Net (Ye et al 2021). For fair comparison,
the experimental implementation details of all methods are kept consistent.

Table 3 shows the comparison results of different methods. As can be seen from table 3, the proposed
framework achieves the best performance. The segmentation performance of FCN is bad, which may because
that FCN loses feature information for the small targets during deconvolution based feature map upsampling
without reasonable skip connections. SegNet uses the max-pooling indices to upsample the feature maps
without learning and also fails to outperform U-Net with classical skip connections, indicating that the full
fusion of high-level and low-level feature information is important in restoring the local details of the feature
map. Although DANet introduces spatial and channel attention modules, its segmentation performance is not
good, which may because its decoder structure is too simple to be suitable for the multi-class fluid segmentation
task. Attention U-Net introduces the attention gate module in the skip connection and achieves some
improvement compared with U-Net, indicating attention mechanism plays an important role in image semantic
segmentation. CE-Net combines pooling operation and dilated convolution to design a multi-scale contextual
information extraction module, which outperforms PSPNet and DeepLab-V3. CPFNet combines two
pyramidal modules to fuse global and multi-scale context information and outperforms CE-Net. CAF-Net
introduces CSE module and context pyramid guide (CPG) module and outperforms all the networks mentioned
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Table 3. Comparisons of different methods (%).

DSC IoU
Methods Acc
IRF SRF PED Average IRF SRF PED Average Overall

DANet (Futeal 2019) 58.34 £ 15.64 68.97 £ 23.16 61.62 £ 23.91 62.98 £ 20.90 42.73 = 14.39 56.61 £ 23.57 48.21 £ 22.23 49.18 £ 20.06 98.92 £+ 1.14
DeepLab-V3 (Chen et al 2017a) 59.71 £ 14.47 69.37 + 24.21 65.08 £ 22.29 64.72 £ 20.32 43.97 & 14.06 57.41 £ 24.34 51.63 £ 21.52 51.01 £ 19.96 98.96 + 1.07
FCN (Shelhamer et al 2017) 65.24 + 14.03 72.95 £ 22.88 64.19 £ 21.17 67.46 £ 19.36 49.87 £ 14.06 61.41 £ 22.63 50.42 £ 20.45 53.90 & 19.05 98.98 &+ 1.10
PSPNet (Zhao et al 2017) 66.28 + 14.74 74.09 £ 22.43 66.40 £ 22.37 68.92 £ 19.85 51.14 £ 14.72 62.68 £ 22.57 53.25 £ 22.13 55.69 £ 19.86 99.08 £ 1.02
CE-Net (Gueral2019) 69.02 £+ 16.31 75.12 £+ 22.35 68.34 £ 23.99 70.83 £ 20.88 54.70 £ 16.57 64.07 £ 22.95 55.98 £ 23.46 58.25 £ 20.99 99.16 £ 0.96
SegNet (Badrinarayanan et al 2017) 69.31 £+ 15.58 76.31 £ 20.78 68.06 £ 24.02 71.23 £ 20.12 54.89 £ 16.06 65.26 & 22.20 55.75 4 23.89 58.63 & 20.72 99.17 £+ 1.00
CPFNet (Feng et al 2020) 69.55 + 14.27 76.25 £ 18.69 69.11 + 21.93 71.64 £ 18.30 54.94 £ 15.17 64.66 £ 20.94 56.36 + 22.34 58.66 = 19.48 99.19 £+ 0.90
U-Net (Ronneberger etal 2015) 72.06 + 12.63 77.22 £ 19.11 70.34 £ 20.21 73.21 £ 17.32 57.69 + 14.15 66.06 £ 21.19 57.33 + 20.72 60.36 £ 18.69 99.19 + 0.92
Attention U-Net (Oktay et al 2018) 71.95 £ 14.46 77.87 £ 18.84 70.56 £ 20.98 73.46 £+ 18.10 57.90 £ 15.53 66.80 £ 20.59 57.96 &+ 22.10 60.89 £ 19.41 99.19 £ 1.00
CAF-Net (Yeetal 2021) 73.17 £ 13.49 79.70 £ 13.80 71.06 £ 22.12 74.64 £ 16.47 59.21 £ 14.68 68.12 £ 16.92 58.92 & 23.20 62.08 = 18.27 99.26 + 0.84
Proposed 73.62 £ 13.19 80.92 £ 12.68 74.64 £ 19.08 76.39 £ 14.98 59.72 & 14.54 69.65 + 16.43 62.72 + 21.78 64.03 = 17.58 99.32 £ 0.78
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Table 4. Comparison of parameters and training time of different methods (M: Mbyte, H: hour, Sec/image: second per image).

Methods DANet DeepLab V3 FCN PSPNet CE-Net CPFNet SegNet U-Net Attention U-Net CAF-Net proposed
Parameters (M) 66.42 58.16 30.32 27.49 38.96 21.05 29.44 34.52 34.88 22.89 23.18
Training time (H) 4.42 4.88 4.68 3.77 3.82 3.93 6.43 10.03 11.28 4.90 5.63
Prediction time (Sec/image) 0.022 0.017 0.019 0.019 0.021 0.021 0.018 0.022 0.022 0.019 0.021
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above. Figure 9 shows some example of comparison experiments, which indicates that the proposed cascaded
segmentation framework outperforms other state-of-the-art networks.

In addition, in order to further verify the performance of the proposed method, we compare the parameters
and training time of the different methods mentioned in comparison experiments, which is shown in table 4. As
can be seen from table 4, the proposed method achieves the best performance with relatively less parameters and
training time.

5. Conclusion and discussion

In this paper, we propose a two-stage multi-class retinal fluid joint segmentation framework based on cascaded
convolutional neural networks. In the pre-segmentation stage, the retinal relative distance map is generated
according to the retinal mask segmented by a simple U-shape network, which can provide spatial prior
information for the next fluid segmentation stage. In the fluid segmentation stage, an ICAF-Net is proposed
based on CSE modules and MSMC, which can fully use the context information and category prior information
to guide the feature extraction and fusion. The RETOUCH challenge dataset (training and validation set) is used
to evaluate the proposed framework. The quantitative and qualitative analysis of the experimental results shows
the proposed segmentation framework achieves good performance in the multi-class retinal fluid

segmentation task.

Although the proposed framework performs well in the multi-class fluid segmentation task, the dataset used
in this paper is only composed of 70 three-dimensional retinal OCT images, which is far from enough to ensure
the generalization of the model. Even if the dataset can be augmented by collecting more OCT images in the
future, the labeling of ground truth will be time-consuming. To further improve the segmentation performance
and generalization of the proposed framework, we will focus on utilizing the domain adaptive ability of the
transfer learning technology (Long et al 2015, Chen et al 2019, Sahu et al 2021), trying to use a small amount of
labeled data to guide and enhance the network training based on a large amount of unlabeled data. In addition,
with the subsequent collection of 3D OCT volumes and the annotation of the corresponding ground truth, we
will try to extent our network for 3D fluid segmentation, which can make full use of the spatial structure prior
information of 3D OCT volumes.
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