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Abstract
Objective. Retinalfluidmainly includes intra-retinal fluid (IRF), sub-retinalfluid (SRF) and pigment
epithelial detachment (PED), whose accurate segmentation in optical coherence tomography (OCT)
image is of great importance to the diagnosis and treatment of the relative fundus diseases.Approach.
In this paper, a novel two-stagemulti-class retinal fluid joint segmentation framework based on
cascaded convolutional neural networks is proposed. In the pre-segmentation stage, aU-shape
encoder–decoder network is adopted to acquire the retinalmask and generate a retinal relative
distancemap, which can provide the spatial prior information for the nextfluid segmentation. In the
fluid segmentation stage, an improved context attention and fusion network based on context
shrinkage encodemodule andmulti-scale andmulti-category semantic supervisionmodule (named
as ICAF-Net) is proposed to jointly segment IRF, SRF and PED.Main results. the proposed
segmentation frameworkwas evaluated on the dataset of RETOUCHchallenge. The averageDice
similarity coefficient, intersection over union and accuracy (Acc) reach 76.39%, 64.03% and 99.32%
respectively. Significance. The proposed framework can achieve good performance in the joint
segmentation ofmulti-classfluid in retinal OCT images and outperforms some state-of-the-art
segmentation networks.

1. Introduction

MACULAR edema is the accumulation offluid in themacular area of the retina due to the destruction of the
blood-retinal barrier. It occurs secondary to diabetic retinopathy (DR), retinal vein occlusion and other retinal
diseases, which could lead to serious impairment in vision (Bringmann et al 2004). Retinalfluidsmainly include
three types: intra-retinal fluid (IRF), sub-retinalfluid (SRF) and pigment epithelial detachment (PED). Figure 1
shows three examples of optical coherence tomography (OCT) (Huang et al 1991)B-scan images with IRF, SRF
and PED.As can be seen from figure 1, IRF is usually located between the inner and outer nuclear layers and
appears as low-reflective cystic edema, which increases the overall thickness of the retina. SRF is an exudate that
accumulates between the photoreceptor cell layer and the retinal pigment epithelium (RPE), which is also a low-
reflective area caused by retinal detachment. PED is caused by the separation of RPE layer and Bruch’s
membrane, which can be further divided into serous type (low-reflective and dome-shaped area),fibrovascular
type (irregular-shaped areawith non-uniform reflection) and drusen type (medium to high reflection areawith
smooth boundary) (Marmor 1999). In clinical cases, IRF, SRF and PEDmay appear simultaneously in the same
eye. Studies have shown that retinalfluid is an effective biomarker, whose size, location and shape can provide
accurate information for the diagnosis and treatment ofmacular edema (Ristau et al 2013,Waldstein et al 2016).
Therefore, accurate segmentation ofmulti-classfluid in the retinal OCT image is of great importance, which is
also challenging due to the various shapes, locations and blurred boundaries.
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In recent years,many researches have been proposed for the segmentation of retinal fluid inOCT images,
which can be classified as traditionalmachine learning basedmethods, deep learning basedmethods and
methods based on the combination of these twomethods. In traditionalmachine learning basedmethods,
Wilkins et al proposed a thresholding and boundary tracking basedmethod to segment retinalfluid (Wilkins
et al 2012). Xu et al obtained thefluid segmentation result by stratified sampling voxel classification (Xu et al
2015).Wu et al proposed a continuousmaxflowoptimization random forest classification basedmethod to
segment serous retinal detachment (Wu et al 2017).Montuoro et al combined unsupervised feature
representation and heterogeneous spatial context to realize the joint segmentation of retinal layer andfluid
(Montuoro et al 2017).Wu et al proposed aGaussianmixturemodel based intra-retinal cystoidmacular edema
segmentationmethod (Wu et al 2020). Rashno et al used a neutrosophic transformation and graph-based
shortest pathmethod to segment fluid/cyst regions inOCT images of subjects with diabeticmacular edema
(Rashno et al 2017). Rashno et al proposed a neutrosophic C-means clusteringmethod forfluid segmentation in
retinalOCT images (Rashno et al 2019). Esmaeili et al proposed a three-dimensional curvelet transformbased
dictionary learning for the automatic segmentation of intraretinal cysts inOCT images (Esmaeili et al 2016). The
traditionalmethodsweremainlywell-designed for a certain type offluid, whose segmentation efficiency is
generally low.

There are some studies which tried to combine traditionalmachine learning based algorithmswith
convolutional neural network (CNN) to segment the retinalfluid. Lu et al proposed a framework for themulti-
classfluid segmentation including IRF, SRF and PED in retinal OCT images, inwhich a fully convolutional
neural networkwas trained to label the fluid pixels based on the intensity ofOCT images and retinal layer
segmentation provided by a graph-cut algorithm. Random forest classificationwas performed as post-
processing to exclude the false positives (Lu et al 2019). Rashno et al proposed a graph shortest path algorithm
andCNNbasedmulti-classfluid segmentationmethod, inwhich the graph shortest path algorithmwas used to
segment internal limitingmembrane (ILM) andRPE layers, PEDwas segmented by RPE layerflattening, and
IRF and SRFwere segmented by aCNN trainedwith supervision (Rashno et al). Gopinath et al designed aCNN
to locate retinal cysts in three-dimensional OCT images by focusing on the axialmovement of theOCTB-scan
image to selectively enhance the lesion area. Thefinal segmentation of cysts is obtained via K-means clustering of
the detected cyst locations (Gopinath and Sivaswamy 2018). Comparedwith the traditionalmethods, the
segmentation performance of the tradition and deep learning combination basedmethods is generally
improved, but there is still room for improvement in segmentation efficiency.

With the rapid development of convolutional neural networks,more andmore studies have focused on
CNNbased networks to segment retinalfluid inOCT images. Lee et al used aU-shape encoder–decoder
structure based convolutional neural network to segment IRF (Lee et al 2017). Roy et al proposed a fully
convolutional deep architecture based ReLayNet for end-to-end segmentation of retinal layers and fluidmasses
(Roy et al 2017). Schlegl et al proposed an encoder–decoder structure basedCNN for IRF and SRF segmentation
(Schlegl et al 2018). Venhuizen et al realized the automatic segmentation and quantification of intraretinal
cystoidfluid by using the cascadedU-shape convolutional neural network and retinal anatomical prior
information (Venhuizen et al 2018). These segmentation networks realized the end-to-end retinalfluid
segmentation by using the relatively primitiveU-shape encoder–decoder structure based networks, whose
segmentation performances can be further improved by introducing strategies such asmulti-scale information
fusion and attentionmechanism.Gao et al proposed a fully convolutional networkDA-FCNbased on dual-
branch and region constraint to achieve automatic SRF segmentation, inwhich the dual branches structure

Figure 1.Retinal OCTB-scanswith IRF, SRF and PED. From left to right: Cirrus, Spectralis andTopcon. All images are resized to
256×256.
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enables the network learnmulti-level feature representations (Gao et al2019). Yang et alproposed a residual
multiple pyramidpooling network (RMPPNet) to realize the segmentationof retinal neurosensory layer
detachment inOCT images.With residual architectures andpyramid poolingmodules, RMPPNet can deal with
the receptivefield andmulti-scale featureswell (Yang et al2020). Chen et alused the improved convolutional
neural network SEUNet based on the channel attentionmechanism to segment the retinalfluid (Chen et al2020).
Feng et aldesignedCPFNet equippedwith twopyramidmodules to extract and fusemulti-scale information and
achieved goodperformance inmulti-classfluid segmentation including retinal edemaarea (REA), SRF andPED, in
which thepyramidmechanismcan effectively strengthen the segmentation ability of the network for targetswith
various sizes (Feng et al2020). Hassan et alproposed anewmulti-scale feature extractormodule anddemonstrated
superior results inmacularfluids segmentation including IRF, SRF andPED (San et al2020). In our previouswork,
weproposed amulti-class retinalfluid automatic segmentationnetworkCAF-Net based on context shrinkage
encode (CSE)module and context pyramidguidemodule (Ye et al2021), which can be further improved by
considering thefluid prior informationboth in spatial location andfluid category.

Although there have beenmanymethods for retinal fluid segmentation inOCT images as described above,
most of thesemethods are designed for single-class fluid segmentation. Due to the various shapes, random
locations and blurred boundaries of IRF, SRF and PED, the joint segmentation ofmulti-class fluid inOCT
images is very challenging. In this paper, based on our earlier proposedCAF-Net andmaking full use of the prior
information including the category information and the relative spatial location information offluid, we
propose a newmulti-class retinal fluid joint segmentation framework based on the cascaded convolutional
neural networks.

Themain contributions of this paper are as follows:

(1) A two-stage multi-class retinal fluid segmentation framework based on ICAF-Net (Improved CAF-Net,) is
proposed, which combines the prior information including the category information and relative spatial
location offluid to improve themulti-class retinalfluid joint segmentation performance.

(2) In the pre-segmentation stage, a U-shape network is used to obtain the retinal mask and a retinal relative
distancemap is generated, which can provide the prior information about the relative spatial location of
thefluid.

(3) In the fluid segmentation stage, a novel multi-scale and multi-category semantic supervision (MSMC)
module is proposed, inwhich the fluid category prior information generated byMSMC is fully used as the
deep supervision tomake ICAF-Net learnmore intra-class consistency and inter-class difference in the
advanced semantic features.

(4) The proposed framework was evaluated on the training and validation dataset ofMICCAI2017 RETOUCH
Challenge. The results of ablation experiments and comparison experiments show that the proposed
method can effectively achieve the joint segmentation ofmulti-class retinal fluid inOCT images.

Figure 2.The overall architecture of the proposed segmentation framework. Skip connections for both branches are omitted for
clarity.
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The rest of this paper is arranged as follows: in section 2, we describe the proposedmulti-class retinalfluid
segmentation framework in details. The experimental results are presented and analyzed in section 3, followed
by the conclusions and discussions in section 4.

2.Methods

2.1.Overview of the framework architecture
Figure 2 is the overall illustration of the proposedmulti-class retinalfluid joint segmentation framework based
on the cascaded convolutional neural networks, which includes pre-segmentation stage and fluid segmentation
stage. In the pre-segmentation stage, a U-shape encoder–decoder network is adopted to acquire the retinalmask
and generate the retinal relative distancemap, which can provide the spatial prior information for the next fluid
segmentation. The retinal relative distancemap is concatenated to the original retinal OCT image in the channel
dimension and taken as the input of the next fluid segmentation stage. In the fluid segmentation stage, the ICAF-
Net based onCSEmodule andmulti-scale andMSMCmodule is adopted to jointly segment IRF, SRF and PED.

2.2. Pre-segmentation stage
According to the clinical knowledge, although the quantity, shape and spatial location of IRF, SRF and PED
inter-eyes are various, the three generallymaintain a relatively stable relationship in the depth direction, that is,
from the inner retina to the outer retina (from top to bottom infigure 3), they usually are IRF, SRF and PED. This
spatial prior information is useful to the joint fluid segmentation.

First, the retinal region (from the inner limitingmembrane to the Bruch’smembrane infigure 3(a)) is
segmented by aU-shape networkwith pre-trained ResNet34 (He et al 2016) as backbone. A joint loss function

Figure 3.The retinal OCT image and the generated retinal relative distancemap. (a)OCT image and three types offluids; (b) retinal
relative distancemap. All images are resized to 256×256.

Figure 4.The overall architecture of the proposed ICAF-Net.
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consisting of cross entropy loss and exponential logarithmicDice loss is used during the network training. Due
to the retinal boundary deformation caused by the fluid, the retinal region segmentation result is post-processed
includingmorphological open and close operation,maximum connected area extraction and curve fitting to
obtain amore accurate retinalmask. Then, the relative distancemap of the retina is generated based on the
retinalmask. Specifically, the value I(x, y) of point (x, y) in the retinal relative distancemap can be calculated as
follows:

I x y
y U x

D x U x
, , 1=

-
-

( ) ( )
( ) ( )

( )

whereU(x) represents the vertical ordinate of the upper retinal boundary of point (x, y) in column, that is, the
vertical ordinate of the inner limitingmembrane.D(x) represents the vertical ordinate of the lower boundary of
point (x, y) in column, that is, the vertical ordinate of the Bruch’smembrane. Figure 3(b) shows the retinal
relative distancemap generated according to Formula (1), which can be used as the spatial prior information to
guide the specific target feature extraction and enhancement in the subsequent retinalfluid segmentation
network.

2.3. Fluid segmentation stage
Figure 4 shows the overall structure of ICAF-Net, whichmainly composes of feature encoder, CSEmodule,
MSMCmodule and feature decoder. The channel attentionmechanism and soft thresholding basedCSE
module is the same as that is proposed in our previous CAF-Net (Ye et al 2021) (shown infigure 5) and
embedded after each feature encoder. TheMSMCmodule is embedded in the top of the feature encoder path.

2.3.1. Feature encoder and decoder
In order to get representative featuremaps, we adopt the same feature encoder path as the original U-Net
(Ronneberger 2015). The number of featuremaps of each encoder is halved to reduce the risk of overfitting. In
order to efficiently reconstruct high-resolution featuremaps, each feature decoder of ICAF-Net includes a 3×3
convolution and a transposed convolution. The number of featuremaps in the decoder path is also halved
compared to the original U-Net. Specifically, the decoder fuses the featuremaps from the correspondingCSE
module (Donoho 1995) through skip connection and 3×3 convolution, and then upsamples the fused feature
map through transposed convolution.

2.3.2.Multi-scale andMSMCmodule
Images generally contain category prior information, which determines whether there is a target of a certain class
in the image and is the basis for pixel-level classification (Yu et al 2020).We propose amulti-scale andmulti-class
semantic supervision (MSMC)module (shown infigure 5) to aggregate long-range andmulti-scale semantic
information, then deep supervisionwill be applied to directly supervise the aggregation of high-level features
and distinguish the intra-class and inter-class context information. As shown infigure 5, assuming the size of the
input featuremapX isM×H×W (M is the number of channels,H andW are the height and thewidth of the
featuremap respectively). First, we use three parallel dilated convolutions to aggregatemulti-scale information
and global average pooling to capture long-range information. Second, we use 3×3 convolutionwith learnable
parameters to resize X M H WÎ ´ ´ to X N H W¢ Î ´ ´ (N=H×W). The category prior affinitymapA, which

Figure 5.The structure ofmulti-scale andmulti-category semantic supervision (MSMC)module.
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is generated based on the ground truth and one-hot encoding (Yu et al 2020, Karthiga et al 2021), is adopted to
guide the category prior featuremapX′′ to learn the intra-class and inter-class relationships between pixels. The
featuremapX′ is reshaped toN×N (N=H×W) and followed by sigmoid activation function to generate
category prior featuremapX′′. Third,matrixmultiplication is performed between reshapedX′ andX′′ to
generate intra-class context information featureY. And the inter-class context information featureZ is
adaptively learned bymultiplyingX′with 1−X′′. Finally, the input featuremapX, intra-class context
information featuremapY and inter-class context information featuremapZ are concatenated in the channel
dimension, and a 1×1 convolution is used to fuse and restore the dimension of the output featuremapO to
M×H×W. The overallMSMCmodule can be summarized as:

X Re X@ 2N Ns = ¢ Î ´( ) ( )
Y X X 3N H W= ¢ Ä  Î ´ ´ ( )

Z X X1 4N H W= ¢ Ä -  Î ´ ´( ) ( )
O Conv X Y X© © , 5M H W= ¢ Î ´ ´( ) ( )

whereσ represents the sigmoid activation,Re@represents the operation of reshape,⊗ represents thematrix
multiplication, © represents the operation of concatenation,Conv represents the 1×1 convolution.

In order tomake full use of the pixel-wise category prior information contained in the ground truth, the
category prior affinitymapA is generated based on the ground truth and one-hot encoding (Yu et al 2020,
Karthiga et al 2021) and adopted as the deep supervision of the network training, which can guide the category
prior featuremapX′′ to learn the intra-class and inter-class relationships between pixels. Figure 6 shows the
generation of the category prior affinitymapA. First, the ground truth is resized to GT .H WÎ ´ Second, one-
hot encoding is adopted to encode each category label inGT to get I ,C H WÎ ´ ´ whereC represents the
number of categories. Third, I C H WÎ ´ ´ is reshape to I ,C NÎ ´ where N H W .= ´ At last, the category
prior affinitymapA is obtained through A I I .T N N= ´ Î ´

2.4. Loss function
To overcome the class distribution imbalance problem, the joint ofmulti-class cross entropy loss LCE and
exponential logarithmicDice loss (Wong et al 2018). LELDice is used as the joint segmentation loss function LSeg to
supervise the prediction results of the network. The definition of LCE, LELDice and LSeg are as follows:

L L L 6Seg CE ELDice1l= + ( )

L
T

y p
1

log 7CE
i

T

c

C

i c i c
1 1

, ,åå= -
= =

( ) ( )

L
C

ln
y p

y p

1 2

0.5 , 8

ELDice
c

C
i
T

i c i c

i
T

i c i c1

1 , ,

1 , ,

⎧
⎨
⎩

⎡

⎣
⎢

⎤

⎦
⎥

⎫
⎬
⎭

å
e

e

g

= -
å +

å + +

´ =

g

=

=

= ( )

( ) ( )

whereλ1 is a trade-off between LCE and LELDice and is set to 1 in all experiments. y 0, 1i c, Î { } represents the
probability that the pixel i belongs to class c in ground truth. p 0, 1i c, Î [ ] represents the probability that the pixel
i is predicted to be class c.T represents the total number of pixels in the image, andC represents the total number
of categories. ε is a smooth factor and is set to 1e-6.

In order to better guide the network tomodel the intra-class and inter-class relationships, the category prior
featuremapX’ is deeply supervised during the network training by adopting the auxiliary loss function LAux,
which combines the unstructured loss LBCE and the structured loss LG:

Figure 6.Generation of the category priori affinitymapA.
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L L L , 9Aux BCE G2l= + ( )

where LBCE is the binary cross-entropy loss and LGmeans global-based structured loss.λ2 is a hyperparameter to
balance the two losses and is set to 1 in all experiments.

The definition of LBCE is as follows:

L
N

y p y p
1

log 1 log 1 , 10BCE
i

N

i i i i2
1

2

å= - + - -
=

( ( ) ( ) ( )) ( )

where y 0, 1i Î { } represents the probability that the pixel i belongs to the target in the category prior affinity
mapA, p 0, 1i c, Î [ ] represents the probability that the pixel i is predicted to be the target in the category prior
featuremapA.N represents the rows ofA,N2 represents the total number of pixels inA.

The definition of LG is as follows:
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where ,k
pF k

rF and k
sF represent the intra-class accuracy, true intra-class rate and true inter-class rate of the kth

row in the category prior featuremapX′′, respectively.N represents the rows ofA andX′′. y 0, 1
k
i Î { } represents

the probability that the pixel i belongs to the target in the kth row of the category prior affinitymapA,
p 0, 1k

i Î [ ] represents the probability that the pixel i is predicted to be the target in the kth row of the category
prior featuremapX′′.

The joint segmentation loss function Lseg and auxiliary loss function LAux are combined as the total loss
function of the proposed ICAF-Net:

L L L , 15Total Seg Aux3l= + ( )

whereλ3 is a trade-off to balance LSeg and LAux, and is set to 1 in all our experiments.

3. Experiment settings

3.1.Dataset
The dataset used in this paper was acquired from a public competition: RETOUCHChallenge inMICCAI2017
(only training set and validation set are available) (Bogunović et al 2019), including 70 three-dimensional retinal
OCT images collected by 3 different types of devices: Cirrus (24 volumeswith size 1024×512×128),
Spectralis (24 volumeswith 496×512×49) andTopcon (11 volumeswith 885×512×128 and 11 volumes
with 650×512×128). The ground truth is obtained frommanual voxel-wise annotations of thefluid lesions,
whichwere completed by 4 or 2 graders under the supervision of retinal specialist. Figure 1 shows someOCT
B-scans acquired by these three devices. It can be seen from figure 1. that there are obvious differences in noise
level and contrast between the images fromdifferent devices. Three-fold cross-validation strategy is used to
objectively evaluate the proposedmulti-class fluid segmentation framework and each fold contains images from
different types of devices. Data augmentation strategies including randomhorizontal flip, random rotation
(±10°) andGaussian noise addition are applied during the training process.

3.2. Evaluationmetrics
In order to objectively evaluate the proposedmulti-class retinal fluid joint segmentation framework, three
evaluation indicators includingDice similarity coefficient (DSC), intersection over union (IoU) and accuracy
(Acc) are adopted. These threemetrics are also used in the pre-segmentation stage to evaluate the retinal region
segmentation performance.Metrics are calculated as follows:

DSC
TP

TP FP FN

2

2
16=

+ +
( )

IoU
TP

TP FP FN
17=

+ +
( )
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Acc
TP TN

TP FP TN FN
, 18=

+
+ + +

( )

where TP, FP, TN and FN represent true positive, false positive, true negative and false negative, respectively.

3.3. Implementation details
The proposedmethod is implemented based on the public platformPytorch andNVIDIARTX2080Ti with 11
GBmemory. In the training process of both the pre-segmentationU-shape network and the fluid segmentation
ICAF-Net, stochastic gradient descent (SGD) algorithmwith poly learning rate policy is used to optimize the
weights of the networkwith learning rate lr:

lr lr
Iter

Iter
1 , 19b

t

p

⎜ ⎟
⎛
⎝

⎞
⎠

= ´ - ( )

where Iter and Itert represent the current number of iterations and the total number of iterations respectively. In
all ablation and comparison experiments, the basic learning rate lrb is set to 0.01 and the declining index p is set
to 0.9. The batch size is set to 8 and the epochs is set to 50.

4. Results

4.1. Experimental results of the pre-segmentation stage
To evaluate the retinal region segmentation performance in the pre-segmentation stage, three ablation
experiments are conducted, including basicU-shape network, U-shape networkwith pre-trained ResNet34 (U-
shape network+pre-trained ResNet34) andU-shape networkwith pre-trained ResNet34 and curve fitting
based post-processing (U-shape network+pre-trained ResNet34+post-processing). Table 1 shows the
results of these three ablation experiments. As shown infigure 1, because the contrast between the retinal region
and the background is relatively large, the segmentation of retinal region inOCT images is a relatively easy task
and good segmentation performance can be achieved by using the basicU-shape networkwith all evaluation
metrics over 98%. It can be seen from table 1 that the loading of the pre-trainedResNet34model can further
improve the retinal region segmentation performance, indicating that loading the pre-trainedweights can not
only promote the convergence of the network, but also enhance the network’s ability to capture useful features
andfinally optimize the segmentation performance. In a fewB-scans, the retinal region segmentation results are
affected byfluid (mainly PED), resulting in severe errors as shown in the last row offigure 7(c). Formost of the
B-scans, the retinal region segmentation results are either the correct one as shown in the first row offigure 7(c),
or the onewith a few false negatives and/or false positives s as shown in the second rowoffigure 7(c). But as
shown in the second and last rows offigure 7(e), the corresponding retinal relative distancemapsmay provide

Figure 7.Post-processing and retinal relative distancemap. (a)OriginalOCTB-scan image, (b) ground truth of retinalmask, (c)
predicted retinalmaskwithout post-processing, (d)predicted retinalmaskwith post-processing, (e) generated retinal relative distance
mapswithout post-processing, (f) generated retinal relative distancemapswith post-processing. All images are resized to 256×256.

Table 1.The ablation experiment results for retinal region segmentation (%).

Methods DSC IoU Acc

U-shape network 99. 01±0.75 98. 04±1.41 99. 35±0.47
U-shape network+pre-trained ResNet34 99. 08±0.75 98. 20±0.14 99. 41±0.50
U-shape network+pre-trained ResNet34+post-processing 99. 09±0.74 98. 21±0.14 99. 42±0.46
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negative spatial prior information for the nextfluid segmentation stage. Some post-processing operations are
used to correct the retinal boundaries. First,morphological operations including open and close operations with
circular element (radius of 5) are adopted tofill the small holes andmake the retinal boundary smoother.
Second, themaximumconnected area is extracted as the retinal region. Third, cubic curvefitting is performed to
correct the retinal lower boundary. Then, themaximumordinate error between the fitted retinal lower
boundary and the original lower boundary is calculated. If the error is greater than 15 pixels, the original lower
boundarywill be replacedwith the fitted one. Figure 8 shows the comparison of the results of the retinal relative
distancemap before and after post-processing. As can be seen from the comparison of the relative distancemaps
shown in the last two columns of thefirst row and third row offigure 7 (figures 7(e) and (f)), post-processing is of
great significance for the correction of the relative distancemap, which in turn helps to improve the subsequent
fluid segmentation performance.

4.2. Experimental results of thefluid segmentation stage
4.2.1. Ablation experiments
Five ablation experiments are conducted, including Baseline (U-Net with half number offeaturemap channels),
BaselinewithCSEmodule (Baseline+CSE), BaselinewithCSE andMSMCmodules
(Baseline+CSE+MSMC, ICAF-Net), BaselinewithCSE andMSMCmodules and the retinal relative
distancemapwithout post-processing (proposedw/o post-processing) and the proposedmethod. Table 2
shows the results of the ablation experiments. TheDSCmetrics of the proposed framework for IRF, SRF and
PEDare 73.62%, 80.92%and 74.64% respectively, and the averageDCS reaches 76.39%,which achieves a
significant improvement comparedwith the Baseline andmeans that the use of the context information and
prior information can achieve robust feature expression and improve themulti-target recognition ability.

Table 2 shows that, comparedwith Baseline, the addition of CSEmodule improves the segmentation
performance of all three types offluid, especially for IRF and SRF. The possible reason is that the feature
information of the retinal region ismore abundant than the background region, whichmay be also redundant
forfluid segmentation. Comparedwith feature extraction only by stacking convolutional layers in the Baseline,
the CSEmodule can distinguish features according to the global context information andmake the semantic
information of output featuremap have a stronger correlationwith the target fluid. That is, theCSEmodule can
suppress redundant information and retain useful information, thereby effectively extract key information from
noisy featuremaps.

It can be seen from table 2 that the category prior information introduced byMSMChas significantly
improved thefluid segmentation performance, with averageDSC and average IoU increased by 2.12% and
2.05% respectively. In addition, it can also be found that the segmentation performance improvements of IRF,
SRF and PEDare relatively close. The possible reason is that the category prior information is equally important

Figure 8.The segmentation results of ablation experiments onmulti-class fluid joint segmentation. (a)OriginalOCT image, (b)
ground truth, (c) result of Baseline, (d) result of Baseline+CSE, (e) result of Baseline+CSE+MSMC, (f) result of the proposed
method. Red represents IRF, green represents SRF and blue represents PED. All images are resized to 256×256.
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Table 2.The ablation experiment results formulti-class fluid joint segmentation (%).

Methods
DSC IoU

Acc

IRF SRF PED Averagea IRF SRF PED Averagea Overallb

Baseline 71. 09±13.95 75. 26±22.98 68. 50±22.08 71. 62±19.67 56. 74±15.15 64. 41±23.24 55. 63±22.08 58. 93±20.16 99. 13±1.03
Baseline+CSE 72. 76±13.50 78. 12±18.12 68. 60±22.89 73. 16±18.17 58. 72±14.86 66. 92±19.97 56. 11±23.38 60. 58±19.40 99. 22±0.88
Baseline+CSE+MSMC(ICAF-Net) 73. 78±15.03 80. 10±20.12 71. 96±22.38 75. 28±19.18 59. 63±15.46 69. 03±21.00 59. 22±23.27 62. 63±19.91 99. 26±0.89
Proposed+w/o post-processingc 72.92±12.99 79.80±16.67 73.91±17.63 75.54±15.76 58.84±14.67 68.88±18.81 61.26±19.72 62.99±17.73 99.24±0.88
Proposed 73. 62±13.19 80. 92±12.68 74. 64±19.08 76. 39±14.98 59. 72±14.54 69. 65±16.43 62. 72±21.78 64. 03±17.58 99. 32±0.78

a Means the average value of the corresponding indexes of IRF, SRF and PED respectively.
b The overall segmentation accuracy of IRF, SRF andPED.
c Means the proposed two-stage segmentation frameworkwithout the post-processing in the retinal region segmentation stage.
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for all the three types offluids andMSMCcan effectively aggregate long-range andmulti-scale semantic
information and selectively capture the intra-class and inter-class dependencies between pixels, whichmakes the
network learnmore intra-class consistency and inter-class difference. It can be seen from table 2 that the spatial
prior information introduced by the retinal relative distancemap can effectively improve the segmentation
performance of PED, increasing its averageDSC, average IoU andAcc by 1.11%, 1.40% and 0.06% respectively.
The retinal relative distancemap based spatial prior information has little effect on the segmentation of IRF.We
think the possible reason is that the spatial position of IRF in the retina is relatively fixed and stable in depth
direction, which can be learnedwell by ICAF-Net during network training.While the distributions of SRF and
PEDare relatively close, it is necessary to use the retina relative distancemap to distinguish them effectively.
Comparing the fourth and fifth rows in table 2, it can be seen that if there is no post-processing in the retinal
region segmentation stage, itmay cause errors in the relative distancemap generated subsequently (as shown in
figure 7(e)), which in turn leads to a decline in the overall segmentation performance of the proposed
framework.

Figure 8 shows somemulti-class retinalfluid joint segmentation results of ablation experiments, which
shows that the use of CSEmodule,MSMCand the retinal relative distancemap information can improve the
segmentation performance of the proposed network effectively.

4.2.2. Comparison experiments
In order to evaluate its performance, the proposedmulti-classfluid joint segmentation framework is compared
with some other state-of-the-art deep learning based image semantic segmentation networks, includingU-Net
(Ronneberger et al 2015), AttentionU-Net (Oktay et al 2018), CE-Net (Gu et al 2019), FCN (Shelhamer et al
2017), SegNet (Badrinarayanan et al 2017), PSPNet (Zhao et al 2017), CPFNet (Feng et al 2020), DeepLab-V3
(Chen et al 2017a, 2017b), DANet (Fu et al 2019) and our previous CAF-Net (Ye et al 2021). For fair comparison,
the experimental implementation details of allmethods are kept consistent.

Table 3 shows the comparison results of differentmethods. As can be seen from table 3, the proposed
framework achieves the best performance. The segmentation performance of FCN is bad, whichmay because
that FCN loses feature information for the small targets during deconvolution based featuremap upsampling
without reasonable skip connections. SegNet uses themax-pooling indices to upsample the featuremaps
without learning and also fails to outperformU-Net with classical skip connections, indicating that the full
fusion of high-level and low-level feature information is important in restoring the local details of the feature
map. AlthoughDANet introduces spatial and channel attentionmodules, its segmentation performance is not
good, whichmay because its decoder structure is too simple to be suitable for themulti-class fluid segmentation
task. AttentionU-Net introduces the attention gatemodule in the skip connection and achieves some
improvement comparedwithU-Net, indicating attentionmechanismplays an important role in image semantic
segmentation. CE-Net combines pooling operation and dilated convolution to design amulti-scale contextual
information extractionmodule, which outperforms PSPNet andDeepLab-V3. CPFNet combines two
pyramidalmodules to fuse global andmulti-scale context information and outperformsCE-Net. CAF-Net
introduces CSEmodule and context pyramid guide (CPG)module and outperforms all the networksmentioned

Figure 9.The segmentation results of differentmethods. (a)Original OCT images, (b) ground truth, (c) the results of FCN, (d) the
results of CE-Net, (e) the results of CPFNet, (f) the results of U-Net, (g) the results of CAF-Net, (h) the results of the proposedmethod.
Red represents IRF, green represents SRF and blue represents PED.All images are resized to 256×256.
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Table 3.Comparisons of differentmethods (%).

Methods
DSC IoU

Acc

IRF SRF PED Average IRF SRF PED Average Overall

DANet (Fu te al 2019) 58. 34±15.64 68. 97±23.16 61. 62±23.91 62. 98±20.90 42. 73±14.39 56. 61±23.57 48. 21±22.23 49. 18±20.06 98. 92±1.14
DeepLab-V3 (Chen et al 2017a) 59. 71±14.47 69. 37±24.21 65. 08±22.29 64. 72±20.32 43. 97±14.06 57. 41±24.34 51. 63±21.52 51. 01±19.96 98. 96±1.07
FCN (Shelhamer et al 2017) 65. 24±14.03 72. 95±22.88 64. 19±21.17 67. 46±19.36 49. 87±14.06 61. 41±22.63 50. 42±20.45 53. 90±19.05 98. 98±1.10
PSPNet (Zhao et al 2017) 66. 28±14.74 74. 09±22.43 66. 40±22.37 68. 92±19.85 51. 14±14.72 62. 68±22.57 53. 25±22.13 55. 69±19.86 99. 08±1.02
CE-Net (Gu et al 2019) 69. 02±16.31 75. 12±22.35 68. 34±23.99 70. 83±20.88 54. 70±16.57 64. 07±22.95 55. 98±23.46 58. 25±20.99 99. 16±0.96
SegNet (Badrinarayanan et al 2017) 69. 31±15.58 76. 31±20.78 68. 06±24.02 71. 23±20.12 54. 89±16.06 65. 26±22.20 55. 75±23.89 58. 63±20.72 99. 17±1.00
CPFNet (Feng et al 2020) 69.55±14.27 76.25±18.69 69.11±21.93 71.64±18.30 54.94±15.17 64.66±20.94 56.36±22.34 58.66±19.48 99.19±0.90
U-Net (Ronneberger et al 2015) 72.06±12.63 77.22±19.11 70.34±20.21 73.21±17.32 57.69±14.15 66.06±21.19 57.33±20.72 60.36±18.69 99.19±0.92
AttentionU-Net (Oktay et al 2018) 71. 95±14.46 77. 87±18.84 70. 56±20.98 73.46±18.10 57. 90±15.53 66. 80±20.59 57. 96±22.10 60.89±19.41 99. 19±1.00
CAF-Net (Ye et al 2021) 73.17±13.49 79.70±13.80 71.06±22.12 74.64±16.47 59.21±14.68 68.12±16.92 58.92±23.20 62.08±18.27 99.26±0.84
Proposed 73. 62±13.19 80. 92±12.68 74. 64±19.08 76. 39±14.98 59. 72±14.54 69. 65±16.43 62. 72±21.78 64. 03±17.58 99. 32±0.78

12

P
hys.M

ed.B
iol.67

(2022)125018
W

T
an
g
etal



Table 4.Comparison of parameters and training time of differentmethods (M:Mbyte,H: hour, Sec/image: second per image).

Methods DANet DeepLabV3 FCN PSPNet CE-Net CPFNet SegNet U-Net AttentionU-Net CAF-Net proposed

Parameters (M) 66.42 58.16 30.32 27.49 38.96 21.05 29.44 34.52 34.88 22.89 23.18

Training time (H) 4.42 4.88 4.68 3.77 3.82 3.93 6.43 10.03 11.28 4.90 5.63

Prediction time (Sec/image) 0.022 0.017 0.019 0.019 0.021 0.021 0.018 0.022 0.022 0.019 0.021

13

P
hys.M

ed.B
iol.67

(2022)125018
W

T
an
g
etal



above. Figure 9 shows some example of comparison experiments, which indicates that the proposed cascaded
segmentation framework outperforms other state-of-the-art networks.

In addition, in order to further verify the performance of the proposedmethod, we compare the parameters
and training time of the differentmethodsmentioned in comparison experiments, which is shown in table 4. As
can be seen from table 4, the proposedmethod achieves the best performancewith relatively less parameters and
training time.

5. Conclusion anddiscussion

In this paper, we propose a two-stagemulti-class retinal fluid joint segmentation framework based on cascaded
convolutional neural networks. In the pre-segmentation stage, the retinal relative distancemap is generated
according to the retinalmask segmented by a simpleU-shape network, which can provide spatial prior
information for the nextfluid segmentation stage. In thefluid segmentation stage, an ICAF-Net is proposed
based onCSEmodules andMSMC,which can fully use the context information and category prior information
to guide the feature extraction and fusion. The RETOUCHchallenge dataset (training and validation set) is used
to evaluate the proposed framework. The quantitative and qualitative analysis of the experimental results shows
the proposed segmentation framework achieves good performance in themulti-class retinalfluid
segmentation task.

Although the proposed framework performswell in themulti-class fluid segmentation task, the dataset used
in this paper is only composed of 70 three-dimensional retinalOCT images, which is far from enough to ensure
the generalization of themodel. Even if the dataset can be augmented by collectingmoreOCT images in the
future, the labeling of ground truthwill be time-consuming. To further improve the segmentation performance
and generalization of the proposed framework, wewill focus on utilizing the domain adaptive ability of the
transfer learning technology (Long et al 2015, Chen et al 2019, Sahu et al 2021), trying to use a small amount of
labeled data to guide and enhance the network training based on a large amount of unlabeled data. In addition,
with the subsequent collection of 3DOCT volumes and the annotation of the corresponding ground truth, we
will try to extent our network for 3Dfluid segmentation, which canmake full use of the spatial structure prior
information of 3DOCTvolumes.
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